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Abstract-Modified Zehner-Schhmder models are proposed for calculations of the stagnant thermal 
conductivity of two types of porous media with spatially periodic structures. The area-contact model is 
developed to take into consideration finite area contacts between spheres in a packed-sphere bed. It is 
shown that results based on the area-contact model are in better agreement with experimental data than 
those based on the original Zehner-Schlunder model especially at high solid/fluid thermal conductivity 
ratios. The phase-symmetry model is developed for a sponge-like porous medium where each phase is 
continuously connected and phase symmetry must be maintained in the expression of the stagnant thermal 

conductivity. The characteristics of these two models are illustrated. 

1. INTRODUCTION 

SINCE the end of the last century much theoretical 
work has been devoted to the study of the stagnant 
thermal conductivity of porous media. It is now recog- 
nized that the magnitude of the stagnant thermal con- 
ductivity of a porous medium depends not only on 
the porosity, the thermal conductivities of the solid 
and the fluid phases, but also on whether the particles 
are in good contact, point contact or no contact. 
Maxwell [l] obtained the first expressio’h for the stag- 
nant thermal conductivity of a packed-sphere bed by 
assuming a sufficiently dilute dispersion of spheres, 
which is valid as the limit of the porosity 4 approaches 
unity (4 -+ 1). The expression given by Maxwell pro- 
vides a lower bound for the stagnant thermal con- 
ductivity of a packed-sphere bed. Subsequently, 
numerous attempts have been made to extend 
Maxwell’s solution to higher order of (1 - 4). A 
review of these early particle non-touching models has 
been given by Churchill [2]. 

t Author to whom correspondence should be addressed. 

The first point-contact model for the stagnant ther- 
mal conductivity of a packed bed was given by Dis- 
seler and Eian [3] who chased a cube enclosing the 
spherical particle as a unit cell and assumed one- 
dimensional heat conduction in the cell. They assumed 
a simple cubic packing arrangement with six contact 
points between spheres. Dividing the unit cell into com- 
posite layers parallel to the heat flow direction, they 
obtained an analytical expression for the stagnant 
thermal conductivity of the bed. Unaware of Disseler 
and Eian’s work, Kunii and Smith [4] obtained an 
approximate solution for the stagnant thermal con- 
ductivity of a packed-sphere bed. They chose a cube 
containing a spherical particle as a unit cell and 
assumed a minimum of two contact points between 
spheres, which were located on the two sides of the 
cube perpendicular to the heat flow direction. They 
assumed the heat conduction in the unit cell is through 
two parallel paths: the first path represents con- 
duction through the gas-filled voids while the second 
path represents conduction through the solid and gas 
phases ; the equivalent thermal resistance of the fluid 
and the solid phases in the second path is assumed to 
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NOMENCLATURE 

4s solid and fluid interface m exponent in equations (9b) 
B shape factor in equations (6) and (10) and (28) 
b shape factor in equation (22) R radius of the unit cell 
C constant in equations (9b) and (28) rs radius of the contact area 
D, effective diffusivity in a porous r, z coordinates in Figs. 1 and 3 

medium V, volume of the solid phase 
Df diffusivity in a fluid phase x, 2 coordinates in Fig. 9. 
F volumetric fraction of the solid in the 

sandwiched layer shown in Fig. 3 
k, effective stagnant thermal conductivity Greek symbols 

of the saturated porous medium 
: 

deformed factor 
k, thermal conductivity of the fluid phase Wakao and Kato’s contact area 
k, thermal conductivity of the solid phase fraction 
k,f equivalent thermal conductivity of a I fluid/solid thermal conductivity ratio 

composite layer 4 porosity. 

be in series. The fact that Kunii and Smith’s expression 
compares well with their experimental data indicates 
that the thermal resistance in a packed-sphere bed can 
be considered as a combination of thermal resistances 
in parallel and in series. Using an approach similar 
to Kunii and Smith [4], Zehner and Schlunder [S] 
obtained a semi-empirical solution for the stagnant 
thermal conductivity of a packed bed, which has been 
widely used in the literature. 

Both no-contact and point-contact models predict 
that the effective stagnant thermal conductivity of a 
porous medium is zero under vacuum conditions. The 
fact that finite but non-vanishing heat conduction 
takes place in a packed-sphere bed in vacuum is an 
indication that heat conduction through finite contact 
areas between sphere does exist. Ogniewicz and Yov- 
anovich [6] as well as Chan and Tien [7] have analyzed 
the problem of constricted conduction through the 
contact surface of deformed spheres in an evacuated 
condition. It is pertinent to note that flattening of 
spheres in the vicinity of contact points may occur 
due to some external mechanical loads or to the weight 
of the bed itself. This heat conduction mechanism 
was neglected in the point-contact models because the 
thermal resistance due to point contact is infinite ; 
consequently, heat conduction through this mech- 
anism is vanishingly small and can be neglected under 
atmospheric pressure. The effect of finite area contacts 
between spheres on the stagnant thermal conductivity 
of an orthorhombic packing bed was investigated by 
Wakao and Kato [8] who used a finite-difference 
method to solve the conjugate heat conduction prob- 
lem in the solid and the fluid phases within a unit 
cell. They found that the effect of finite-area contacts 
between spheres on the stagnant thermal conductivity 
is important at high solid/fluid conductivity ratio 
(k,/k,). A similar conclusion was reached later by 
Nozad et al. [9] who obtained the stagnant thermal 
conductivity of porous media composed of in-line cir- 

cular and square cylinders (with and without inter- 
connecting plates) by solving numerically the closure 
problems. The interconnecting plates represent area 
contacts between cylinders. If the contact parameter 
is equal to 0.01, they found that their numerical results 
matched their experimental data for a packed-sphere 
bed. Most recently, Hsu et al. [lo] proposed a lumped- 
parameter model and obtained simple algebraic 
expressions for a number of periodic porous media 
composed of two- and three-dimensional particles. 
They found that their results based on in-line cubes 
with a touching parameter of 0.13 matched with 
Nozad et al.‘s data [9] for the whole range of solid/ 
fluid conductivity ratios. 

In this paper, we shall modify Zehner and Schlun- 
der’s approach to obtain closed form solutions for 
the stagnant thermal conductivity of two types of spa- 
tially periodic porous media. The first model is for a 
packed-sphere bed with finite contact areas between 
spheres and the second model is for a sponge-like 
porous medium where each phase is continuously con- 
nected and phase-symmetry exists. It will be shown 
that the first model with finite contact areas taken into 
consideration is in better agreement with experimental 
data than that of the original Zehner-Schlunder 
model, especially at high solid/fluid conductivity 
ratios. 

2. ZEHNER-!XHLUNDEl?‘S MODEL 

In this section, we shall briefly review the Zehner- 
Schlunder model. The unit cell for the Zehner-Schlun- 
der model is shown in Fig. 1, that is an eighth of a 
cylinder with the shaded area denoting the solid phase. 
Zehner and Schlunder [S] assume that heat con- 
duction in the unit cell follows two parallel paths : the 
first path is through the fluid in the outer concentric 
cylinder (of radii R and unity) and the second path 
is through the inner cylinder (of unit radius) which 
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z 

FIG. 1. Unit cell used by Zehner and Schlunder [5] 

consists of both solid and fluid phases. Thus, the 
effective stagnant thermal conductivity k, of the unit 
cell is given by 

k,= 1-h k,++ksf 
( > 

(1) 

where ksf is the equivalent thermal conductivity of the 
inner cylinder consisting of both fluid and solid phases 
and the value of R is to be determined. To determine 
the relationship between R and the porosity, Zehner 
and Schlunder [5] observe from mass transfer exper- 
iments that the diffusivity ratio of a fluid-saturated 
bed to that of a pure fluid is related to the porosity by 

&/Dr = 1 -,/Cl -4) (2) 

where D, is the diffusivity of a fluid-saturated packed 
bed while D, is the diffusivity of the fluid phase. Since 
heat conduction through a bed of non-conducting 
particles surrounded by a conducting gas is analogous 
to mass diffusion in a packed bed, they argue therefore 
that 

lim kc/kc = D,/Df = 1 -,/cl-4). 
&l&-0 (3) 

If the thermal resistances of the solid and of the fluid 
in the composite layer are assumed in series, it follows 
that k,, + k, as k,/k, + 0. At this limit, a comparison 
of equations (1) and (3) gives 

Substituting equation (4) into equation (1) gives 

k, = (1-J(l-$))k,+J(l-4%. (5) 

The value of ksf depends on the shape of the solid and 
fluid interface Af, (see Fig. 1) which is given by 

22 

r2 + [B-(B- l)z]2 = 1 
(6) 

where B is the shape factor. Note that for B = 0 the 
boundary becomes the z-axis with no solid volume, at 
B = 1 the solid becomes a sphere, and at B + co the 

solid occupies the entire inner cylinder. Assuming that 
the thermal resistances of the solid and fluid phases in 
the inner cylinder are in series with respect to the 
temperature gradient and with the aid of equation 
(6), Zehner and Schlunder [5] obtain the following 
expression for ksf : 

(I-I)B Ir 1 B+l 
--S) (7) (l-lB)2 AB 2 

where 1 = kJk,. Substituting equation (7) into equa- 
tion (5) yields 

k 2&l -4) A= l-\/(l-4)+T_B (1-i)B ln L ___ 
kf (I-1B)* LB 

B+l _-_- 
2 (8) 

The shape factor Bin equation (8) is determined from 
a geometric condition which gives 

cp= l- 
B(3-4B+BZ+2 In B) 

> 

’ 

(B-l)3 
Pa) 

The above equation is approximated by 

B=Clp”‘, ( > (9b) 

Zehner and Schlunder [S] found that equation (9b) 
with C = 1.25 and m = lo/9 matched with the exact 
expression given by equation (9a). Based on a least- 
square procedure, however, we found that equation 
(9b) with C = 1.364 and m = 1.055 would match bet- 
ter with equation (9a). 

The stagnant thermal conductivity given by equa- 
tions (8) and (9b) as a function of k,/kf for different 
values of porosity are presented in Fig. 2. For com- 
parison, experimental data obtained by Nozad et al. 

[9] are also plotted in the same graph. It is noted from 
this graph that the Zehner-Schlunder model with 
4 = 0.42 is in good agreement with experimental data 
for 0 < k,/k, < 103. For higher value of the thermal 
conductivity ratio (k,/kf > 103), it is shown that the 
Zehner-Schlunder model underpredicts the stagnant 
thermal conductivity as was pointed out previously 
by Kaviany [ 111. 

3. AREA-CONTACT MODEL 

It can be postulated that the reason the Zehner- 
Schlunder model underpredicts the stagnant thermal 
conductivity of a packed-sphere bed at high solid/fluid 
conductivity ratios is owing to that fact that the model 
assumes point contacts between spheres. As men- 
tioned earlier, finite-area contacts between spheres are 
likely to occur in a packed-sphere bed because of 
external loads or owing to their own weight. To take 
into consideration the finite-area contact between 
spheres, we now modify the solid/fluid interface by 
the following equation : 
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FIG. 2. Comparison of Zehner-Schlunder model [S] with Nozad et al.‘s data [8]. 

ZL 

r2+ [(1+a)B-(B-1)2]2 = l (10) 

where tl is the deformed factor. The modified solid/ 
fluid interface Afs is shown in Fig. 3 where r, is the 
radius of the contact area that can be determined by 
imposing the condition : r = rs, z = 1. It follows from 
equation (10) that 

2 
1 

r, = 1------- 
(1 +aB)Z 

(11) 

If the one-dimensional heat conduction in the unit 
cell (shown in Fig. 3) consists of three parallel paths : 
the outer concentric cylinder (of radii R and unity) 
consisting of the fluid phase, the middle concentric 
cylinder (of radii unity and r,) consisting of both solid 
and fluid phases, and the inner cylinder (of radius r,) 
consisting of the solid phase, the effective stagnant 

z=o 
r 

z=l 

Sf -I-1 ks 
z 

FIG. 3. Unit ceil for the area-contact model 

thermal conductivity is given by 

k = (l-~)k,+(~)k’i+($k~ (12) 

where R is given by equation (4). In the above equa- 
tion, kfs is the equivalent thermal conductivity of the 
middle composite concentric cylinder that can be 
determined from 

where 
s 

1 
(n-nri)k,, = 2nrk*(r)dr 

I? 
(1W 

k*(r) 1 
-= 

kr (1-z)+lz (13b) 

which is obtained from the layer-in-series method. 
Substituting equation (13b) into equation (13a) and 
with the aid of equations (10) and (1 I), the resulting 
equation can be rewritten as 

kr s 1 

k, = 2(1 +ctB)2 
(1 fcr)Bz dz 

0 [I +(A-l)z][(l +n)B-(B- I)@ 

The above integral can be integrated to give 

(14) 

kr 2 (l--1)(1 fcc)B(l +a&2 
k,= [1-~~+u--wl [1-1B+(l-L)aB]2 

l+uB 
X1n(l- 

B+1+2aB (B- 1)(1 +aB) 
2 - 1 -nB+(l -I)olB > ’ 

(15) 

Substituting equation (15) into equation (12) yields 



Modified Zehner-Schlunder models 2155 

241-4) 
+ [l -AB+(l--44 

(1 -a)(1 +a)B 

[i -ns+(i -l)dl* 

xln l+aB 
B+lf201B ~_ 

(1 +a)BA 2(1 +clB)* 

(B- 1) 
- [l-1B+(l-L)aB](l+aB) ) 

(16) 

which is the effective stagnant thermal conductivity of 
a packed-sphere bed with finite contact area of the 
spheres taken into consideration. Note that equation 
(16) with a = 0 (no deformation) reduces to equation 
(8) given by Zehner and Schlunder [5]. 

To determine the value of B, we note that the vol- 
ume fraction of the solid in the unit cell is 

l-9=-$ (17) 

where V, is the volume of the solid which can be 
obtained from 

22 

) 
dz 

[(l +a)B- (B- 1)z12 

TCB 2(l+cr) 

( 

ln (1 +cr)B =~- ___ 
(B-1)2 B-l l+ctB 

+ (B-3)+a(B2-2B-1) 
l+uB >. 

(18) 

Substituting equation (18) into equation (17) and with 
the aid of equation (4) yields 

($=I- B2 
(l-B)‘(l+aB)* 

(B2 -4B+3) 

(1fa)B 

I 

2 

+2(1+a)(l+aB)ln--- 1 +ctB +a(B- l)(B* -2B- 1) 

(19) 

which reduces to equation (9a) if CI = 0. For given 
values of a and 4, equation (19) can be solved for B 
by iterations. However, it can also be approximated 
by equation (9b) with C and m being a function of CL 
The values of C and m for different values of c( (as 
determined by a least-square fit) are presented in Fig. 
4. The values of B versus 4 for a specific value of do 
(a = 0.002) based on equation (19) and the approxi- 
mate expression of equation (9b) are plotted in Fig. 5 
for comparison purposes. It is seen that they are in 
excellent agreement. 

Computations were carried out for equation (16) 
with 4 = 0.42 for various values of a. It was found 
that equation (16) with 4 = 0.42 and u = 0.002 would 
match with Nozad et al.‘s data at high solid/fluid 
conductivity ratio as shown in Fig. 6. The results 

I I I I I 
0 0.2 0.4 0.6 0.8 1.0 

a 

FIG. 4. Variations of C and m with deformed factor a. 

based on Nozad et al.‘s two-dimensional numerical 
model [8] and Hsu et d’s three-dimensional lumped 
parameter model [lo] are also presented in the same 
plot for comparison purposes. It is shown that results 
based on equation (16) are slightly lower than Nozad 
et al.‘s numerical solution and Hsu et al.‘s model for 
k,/kf > 103. It will be instructive to present the results 
of Fig. 6 in terms of the contact area radius rs instead 
of the deformed parameter a. For given values of 4 
and a, B can be determined either from equation (19) 
or from equation (9b) and Fig. 4, and consequently rS 
can be determined. The results of these computations 
are presented in Fig. 7 where r, = 0.08 16 corresponds 
to u = 0.002 and 4 = 0.42. Since the Wakao and 
Kato’s contact area fraction A is related to the radius 
of the contact area rs by the relation A = r:, it follows 
that the value of r, = 0.0861 corresponds to the con- 
tact parameter of A = 0.0074. A similar plot for the 
dimensionless stagnant thermal conductivity versus 
thermal conductivity ratio at selected values of the 
contact area fraction for an orthorhombic packing 
(with 4 = 0.259) was presented by Wakao and Kato 
[8] based on a finite-difference solution. A comparison 
of results of Fig. 7 and those obtained by Wakao and 
Kato [8] shows that they are in excellent agreement 
for k,/kf < 100. The results based on the present model 
become higher than those of Wakao and Kato when 
k,/kf > 100. For example, at k,/kf = lo4 and 
rS = 0.0861 (i.e. A = 0.0074) our model gives 

103 

102 

10 

B 1 

10-l 

10” 

10-3 

- Equation (19) 
- - Equation (9b) with m = 1.045 

and c = 1.332 

FIG. 5. Exact and approximate valuations of the shape factor 
for the area-contact model. 
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model * =0.42 & 1y =0.002 

3D mcdei ckeo.13 

" kJk, lo2 

FIG. 6. Comparison of the area-contact model with other theoretical models and experimental data. 

k,/kf = 70 while Wakoa and Kato’s model gives tively. It can be seen that the finite touching area has 
k,/kf = 30. Thus, our results are closer to the limiting an important effect on the effective stagnant thermal 
case of kJk, -+ co, kJkf -+ Ak,/k,. The inconsistency conductivity only for k,/k, > 103. 
of Wakao and Kato’s results with the limiting case 
may be attributed to insufficient resolution of grid size 
used in the numerical solution. Figure 8 shows the 

4. PHASE-SYMMETRY MODEL 

effect ofporosity on the stagnant thermal conductivity We now consider a sponge-like porous medium 
given by the point-contact model and the area-contact such that each phase is continuously connected and 
model, i.e. equation (16) with CL = 0 and 0.002 respec- has a phase symmetry. Equations (8) and (16) cannot 

IO’ 

lo2 

w f 
IO 

1 

I 

10 10 I " 
ks/k, 

lo 10 10 

FIG. 7. Effects of contact-area radius on the stagnant thermal conductivity. 
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1 
lo ks/k, lo2 

10’ 

FIG. 8. Effect of porosity on the stagnant thermal conductivity of the area-contact model. 

be applied to this type of porous medium because these 
expressions are not symmetric with respect to the two 
phases. To derive an expression for the stagnant ther- 
mal conductivity of this type of porous medium, con- 
sider a unit cell as sketched in Fig. 9. The unit cell 
consists of three parallel layers: a fluid layer and a 
solid layer with a middle composite layer to account 
for the interfacial effect. In symmetry with equation 
(3) we require that 

(20) 

Therefore, the effective thermal conductivity of the 

=b 

e 

X 

FIG. 9. Unit cell for the phase-symmetry model. 

2151 

saturated porous medium consisting of the three par- 
allel layers is 

k, = [l-J(l-~)lk,+(l-J~)k, 

+L/U-4)+&-W,, (21) 
where ksf is the equivalent thermal conductivity of the 
composite layer. The solid-fluid interface is given by 

X+&(;_l)z=l (22) 

where b is the shape factor to be determined. The 
value of ksf can be computed from the layer-in-series 
model which gives 

s’_ b(l-1) lnL_ b-1 k _p 
kf (1 -Lb)* Lb l-lb’ (23) 

Substituting equation (23) in equation (21) leads to 

;= [l-J(l-f$)l+- (l-J& 
f 

+[J(l-$)+J+11 

(2% 

which in the limit of Ib + 1 reduces to 

;= [l-J(l-+)]+(l-J$)/A. 
f 

+[J(l-~)+J~-ll(b+1)/2. (24b) 
Note that equation (24) is symmetric with respect to 
the conductivity ratio as well as the volumetric ratio 
of the fluid and solid phases. 
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- Exact 
--.-** Approximation with 

m = 0.9676 

0 0.2 0.4 0.6 0.8 1.0 

0 

FIG. 10. Exact and approximate evaluations of the shape 
factor for the phase-symmetry model. 

The value of the shape factor b as a function of the 
porosity for the phase-symmetry model can be deter- 
mined as follows. The volumetric fraction of the solid 
in the sandwiched layer is given by 

F= J4-4 
J(l-@+Jw (25) 

On the other hand, the value of F can be calculated 
from 

s I 

F= 
bz dz 

o [b-(b- l)z]’ 
=b(b-l-lnb). 

(b- 1)’ 
(26) 

Equating equations (25) and (26) gives 

J4-4 
J(l-&+ J&l (l!b)2(b-1-1nb) (27) 

=- 

which is the relationship beteen 4 and b. For a given 
value of 4, equation (27) can be solved numerically 

IO2 

w f 

10 

for b by iteration. As before, however, a good approxi- 
mation is given by 

b=C ym. ( > 
It is found that equation (28) with I?? = 0.9676 and 
C = 1 gives results which match those based on equa- 
tion (27), as is shown in Fig. 10. Note that the form 
of equation (28) was chosen such that it satisfies the 
same constraints as equation (27) at the limits of 4 = 0 
and 1 where b = co and 0, respectively. If C is taken 
to be 1, then the constraint at 4 = 0.5 where b = 1 
is also satisfied. The effect of porosity on the phase 
symmetry model is presented in Fig. 11. A comparison 
of Figs. 8 and 11, at given values of k,/k, and 4, shows 
that the stagnant thermal conductivity given by the 
phase-symmetry model is higher than those based on 
the area-contact model. 

5. CONCLUDING REMARKS 

Analytical expressions for the stagnant thermal 
conductivity of two types of spatially periodic porous 
media are obtained based on modifications of the 
well-known Zehner-Schlunder model. The first model 
takes into consideration the finite contact areas 
between spheres which is important for k,/kf > 10’ in a 
packed-sphere bed. With a deformed factor tl = 0.002 
and porosity 4 = 0.42, the area-contact model is in 
excellent agreement with experimental data of a 
packed-sphere bed for a wide range of solid/fluid ther- 
mal conductivity ratios. The second model is for a 
porous medium with phase symmetry that will have 
important applications for composite materials. The 

FIG. 11. Effect of porosity on the phase-symmetry model. 
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accuracy of the phase-symmetry model cannot be 

assessed at this time because of the lack of exper- 

imental data. 
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